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Consequences of explicit symmetry breaking in a physically motivated model of SU�N� antiferromagnet in
spatial dimensions one and two are studied. It is shown that the case N=3, which can be realized in spin-1 cold
atom systems, displays special properties distinctly different from those for N�4. Qualitative form of the
phase diagram depending on the model parameters is given.
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I. INTRODUCTION

During the last several years, there has been a revival of
interest1–12 in unconventional types of spin ordering in sys-
tems with higher spins S�1. This interest is to large extent
motivated by experiments on Bose-Einstein condensates of
cold atoms with internal spin states.13,14 Particularly, order-
ing of the quadrupole degrees of freedom corresponds to the
so-called “spin nematic” type of spin order,15–17 which is
difficult to obtain in conventional magnetic materials since
its existence requires the presence of strong non-Heisenberg
�biquadratic or multispin� exchange terms, or the presence of
strong frustration mixing ferromagnetic and antiferromag-
netic couplings.18–20 In strongly frustrated systems with fer-
romagnetic couplings, higher multipolar orders may win
over the nematic one becoming dominant correlations.19–21

For cold spinful bosons in optical lattices, strong non-
Heisenberg exchange appears in the effective spin model,22,23

favoring spin-nematic order. In higher-spin systems, higher
symmetries may naturally arise. SU�N� generalizations of
Heisenberg spin systems in one and two spatial dimensions
have been extensively studied.24–29 Several recent
studies30–32 explore exotic pairing possibilities opened by the
existence of higher SU�N� symmetries with N�2 in fermi-
onic systems.

In the present paper, we will study what happens to an
SU�N� antiferromagnet �AF� if the high symmetry gets ex-
plicitly broken by a weak perturbation. It will be shown that,
similarly to N=2, the physically important case N=3 is in
many respects special and breaking the SU�3� symmetry
leads to rich behavior which might be realizable in cold atom
setups. We will see that perturbing the SU�3� symmetry has a
drastic effect on the topology, which is reflected in physical
properties due to the role of the Berry phases. Our starting
point will be the S=1 model on an anisotropic square lattice
described by the Hamiltonian

H = �
n

�ĥn,n+x + �ĥn,n+y� ,

ĥn,n� = cos ��Sn · Sn�� + sin ��Sn · Sn��
2, �1�

where Sn is a spin-1 operator at the lattice site n and � is the
parameter controlling anisotropy of the lattice 0���1. This
model appears, particularly, in the physics of ultracold alkali
atoms with hyperfine S=1 spins �e.g., 23Na� in optical lat-

tices at odd filling.23 The parameter � can be varied by tuning
the ratio a2 /a0 of scattering lengths in S=2 and 0 channels
using the Feshbach resonance, as well as by creating a gra-
dient in the optical lattice potential.33 Similar models have
been proposed7,8 as a possible explanation for the unconven-
tional spin state discovered recently1 in the quasi-two-
dimensional �2D� S=1 magnet NiGa2S4 and have been also
discussed9,10 in the context of the deconfined quantum criti-
cality conjecture.34 In one dimension �d=1�, this model has
been extensively studied and a number of analytical35–41 and
numerical3–6,42 results are available. In two dimensions, it
was recently studied numerically by means of quantum
Monte Carlo technique9 and analytically with the help of a
field-theoretical approach.10,43

Using the standard representation of the S=1 operator
Sn
�=−i���	tn,�

† tn,	 through three bosonic operators t�, �
=1, . . .3 satisfying the hardcore constraint

t�
† t� = nc = 1, �2�

one can cast the local Hamiltonian in the form

ĥi,j = − Jti,�
† tj,�

† tj,�ti,� − J̃ti,�
† tj,�

† tj,�ti,�,

J � − cos �, J̃ = cos � − sin � . �3�

Since the model is formulated in terms of local bilinears of
bosonic operators tn, it obviously has the local U�1� symme-
try for any values of the model parameters. We will be inter-
ested in the interval −3
 /4���0. It is convenient to gen-
eralize the Hamiltonian �2� and �3� by letting the boson
flavor index run from 1 to N and allowing the parameter nc in
Eq. �2� to be an arbitrary integer number. In case of the
related models for cold atoms in optical lattices, nc has the
meaning of the number of atoms per lattice site,22 and in
what follows we will assume nc to be odd. For nc=1, N=3
corresponds to Eq. �1�, N=2 describes the spin-1

2 XXZ model

with Jx=−2�J+ J̃�, Jz=2�J̃−J�, and N=4 can be realized44 as
a “bilayer” spin-1

2 model with four-spin interaction between
the layers,

ĥn,n� = �2 cos � − sin ����sn · sn�� + ��n · �n���

+ 4 sin ��sn · sn����n · �n�� , �4�

which is essentially the Kugel-Khomskii spin-orbital model45
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with spin and orbital degrees of freedom described by sn and
�n spin-1

2 operators, respectively; a large number of results
are available for this model in one dimension.46–55

The point �=−
 /2 �J=0� is remarkable since it has an
enhanced symmetry. The Hamiltonian �1� is always SU�2�
�generally, O�N�� invariant, but at �=−
 /2 the symmetry
group is enlarged to SU�3� �respectively, SU�N��: since the
lattice is bipartite, a transformation tn�Utn on sites n be-
longing to sublattice A leaves the Hamiltonian invariant if it
is accompanied by a conjugate transformation tn�U�tn for
n�B, with a unitary matrix U.

Our strategy will be to construct an effective-field-
theoretical description of the problem, using �=−
 /2 �J
=0� as a starting point, and to treat the term proportional to J
as a perturbation. We will also see that a rich behavior is
generated by adding another perturbation, namely, the easy-
axis single-ion anisotropy to the S=1 Hamiltonian �1�,

H � H − D�
n

�Sn
z �2, D � 0. �5�

For the case of a general N this amounts to including the
term of the form D�ntn,N

† tn,N, which breaks the symmetry
down from SU�N� to SU�N−1�. In cold atom systems, such
terms appear naturally in presence of external magnetic field
due to the quadratic Zeeman effect.23,56

The structure of the paper is as follows: In Sec. II the
effective continuum theory in the vicinity of the
SU�N�-symmetric point is derived, Sec. III considers the in-
fluence of the � perturbation breaking the symmetry down to
O�N�, Sec. IV studies the effects of the anisotropy �5�, and
finally, Sec. V contains a brief summary.

II. EFFECTIVE-FIELD THEORY IN THE VICINITY
OF THE SU(N) POINT

To construct the continuum field description, consider a
path-integral representation of the problem, effectively re-
placing the bosonic operators tn,� with complex fields on the
lattice satisfying the constraint in Eq. �2�. To pass to the
continuum properly, one should notice that local spin-
quadrupolar correlations are of the ferromagnetic type for J

+ J̃�0, while the spin-dipolar correlations are antiferromag-

netic provided J̃�J �Ref. 57�; this can be also seen from the
numerical results �see Fig. 8 of Ref. 42�. We will be inter-
ested mainly in the region of ��0, where the first of those
inequalities is always satisfied, but the second one breaks for
���0	−0.65
. The theory derived here will be valid for
���0 and the proper effective theory for ���0 can be found
in Ref. 58.59

The AF character of local spin correlations suggests the
following ansatz for the bosonic lattice fields tn:

tn = �un + i�nvn� + ��n�n + i�n� , �6�

where �n is an oscillating factor taking value �1 for n be-
longing to A and B sublattices, respectively, and u, v, �, and
� are assumed to be smooth functions of the site coordinate
n. Defining zn= �un+ ivn� /
nc and �n= ��n+ i�n� /
nc, one
can rewrite the above ansatz in a simpler form,

tn = 
nc  �zn + �n, n � A

zn
� − �n

� , n � B
� , �7�

where the constraints

z2 + �2 = 1, � · z� + z · �� = 0 �8�

are implied. One can expect that the magnitude of �, which
corresponds to ferromagnetic fluctuations, will be much
smaller than that of z. Using the ansatz �7�, passing to the
continuum, retaining only up to quadratic terms in �, and
neglecting its derivatives, one readily obtains the Euclidean
action A=A0+Aint+AB, where A0 corresponds to J=0,

A0 = 
�nc
2� d�� d2x� 1

nc
��� · ��z − � · ��z

�� + 4J̃�1 + ��

��2 − �� · z2� + J̃��kz2 − z� · �kz2� + �1�� · z�

+ �� · z� + �2�z2 + �2 − 1�� , �9�

and AB is the topological Berry phase contribution

AB = inc�
n,�

�n arg�zn
���� · zn�� + d��� �10�

which is known to play a crucial role in the physics of the
system.24,25,60 It is important to realize10,22 that the naive con-
tinuum limit of Eq. �10�,

AB = nc� d��
n
�nzn

� · ��zn, �11�

can only capture the contributions from smooth field con-
figurations and in case of dominant nematic correlations,
when z becomes a real vector defined up to a sign, misses the
additional phase stemming from disclinations.

The term Aint is determined by the “perturbation” J,

Aint = J
�nc
2� d�� d2x�− z22 + z · �kz2

+ �z2��2 +
1

2
z2��kz

��2 + c.c.�� . �12�

Here the index k runs over two spatial coordinates, the factor

� in Eq. �9�, Eq. �12� comes from rescaling one of those
coordinates to compensate for the anisotropy of interactions,
and �1,2 are the Lagrange multipliers ensuring the con-
straints.

For J=0, one can easily integrate out � and �1 fields; it
turns out that �1=−nc

−1z� ·��z, which yields

� = − �4J̃nc�1 + ���−1���z − z�z� · ��z�� ,

�� = �4J̃nc�1 + ���−1���z� + z��z� · ��z�� . �13�

Substituting this back into Eq. �9�, one obtains the effective
action for z field only, where we can now approximately
assume z2=1. Rescaling the imaginary time axis

��� / �2ncJ̃
1+��, one arrives at the effective action
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A0 =
1

2g
� dd+1x���z2 − z� · ��z2�, g =


1 + �−1

nc
,

�14�

where d=2 is the spatial dimension, and the index � runs
over all d+1 space-time coordinates. Had we started with a
single S=1 chain instead of the square lattice, we would have
obtained the action of the same form �14� but with d=1 and
g=1 /nc. This is nothing but the action of the CPN−1

model,61–65 originally proposed as an effective theory for
SU�N� antiferromagnets by Read and Sachdev.24,25 This ac-
tion has a local U�1� gauge symmetry z�ei��x�z and can be
rewritten in the form

A0 =
1

2g
� dd+1x��� − iA��z2, �15�

where A�= i�z ·��z�� is the U�1� gauge field.
The CPN−1 model without the topological phase term is

always gapped in d=1 and displays an ordering transition in
d=2 at a certain critical value of the coupling constant.63,64

In the disordered phase the z field acquires a finite mass and
a kinetic term for the gauge field is dynamically generated,64

A � A +
N

4e0
2� dd+1xF��

2 , �16�

where F��=��A�−��A�, and the coupling constant e0
2��3−d.

The Berry phase term �10� is crucial for the physics of the
disordered phase;24,25,60 particularly, it leads to spontaneous
dimerization in d=1 for odd nc �except for N=2 which is
special: in that case the system remains gapless and transla-
tionally invariant in a wide g range66–69�, and in two dimen-
sions the disordered phase gets spontaneously dimerized in
different patterns depending on the value of �nc mod 4�. We
will come back to the role of the Berry term later and look
into the rest of the action first.

III. EFFECT OF THE SU(N)¾O(N) PERTURBATION

The perturbing action �12� explicitly breaks the global
SU�N� symmetry down to O�N� but preserves the U�1�
gauge symmetry. Consequently, nonzero J can produce only
gauge-invariant perturbation terms of the form

z22, z · D�z2, . . . ,

where D����− iA� and the ellipsis stands for terms with
higher derivatives. It is easy to see that the first term above is
relevant for d�3, while the second one is irrelevant for d
�1 �for d=1 it is marginal�. It thus makes sense to consider
only the effect of the most relevant term, which brings us to
the perturbed action A	=A0+Aint, with

Aint = −
	

2g
� dd+1xz22, 	 �

J

J̃
. �17�

It is easy to generalize the standard large-N mean-field
analysis63 of the CPN−1 model to include the effect of the
SU�N�-breaking perturbation 	. We consider the action

AMF =
1

2g
� dd+1�x��z2 − z� · ��z2 − 	z22 + ��z2 − 1�� ,

�18�

where � is the Lagrange multiplier responsible for the con-
straint z2=1 and expand it around a stationary saddle-point
solution z=z0 and �=�0. This expansion has to be performed
differently depending on whether the perturbation is of the
“nematic” �	�0� or “antiferromagnetic” �	�0� type.

A. Nematic side (��0)

In this case the saddle point can be chosen in the form
z0= �n0 , 0 , . . . ,0�, which in our original N=3 model corre-
sponds to the spin-nematic �quadrupolar� order. Fluctuations
around the mean-field solution, z=z0+u+ iv can be described
by two real N-component vectors u and v. Due to the con-
straint z2=1 one can set u1	0 and the gauge-fixing condi-
tion �e.g., setting n0 to be real� yields v1	0. After integra-
tion over quadratic fluctuations, the saddle-point equations
are obtained as

n0
2 + g�N − 1��

k
� 1

�0 + k2 +
1

�0 + 4	 + k2� = 1,

�0n0 = 0, �19�

where the sum is over �d+1�-dimensional reciprocal space.
In one spatial dimension d=1, the model is disordered �n0
=0� for any value of the coupling constant g, and the field z
is always massive with �0=�2 having the meaning of the
squared spectral gap,

�2 � �2 exp�−
2


g�N − 1�� − 2	, 	 � �2, �20�

where � is the lattice �UV� cutoff and it is assumed that 	
��2 and both 	 and � are small compared to the cutoff. In
the opposite case if 	��2 one obtains

� �
�2

2
	
exp�−

2


g�N − 1��, 	 � �2. �21�

In two dimensions d=2, there is a finite second-order transi-
tion point g=gc given by

gc
−1 �

N − 1


2 �� −



2

	� , �22�

such that for g�gc the O�N� symmetry is spontaneously
broken and the ground state is ordered n0

2=1−g /gc, while for
g�gc one has a disordered phase with n0=0 and �0=�2,
where the gap � behaves as �� 4


N−1 �gc
−1−g−1� at g→gc.

The transition at g=gc corresponds in our original model
�1� to a transition at some critical value of anisotropic cou-
pling �=�c, so that one has the spin-nematic ordered phase
at ���c and the quantum-disordered phase at ���c, and
the “disordered” phase actually corresponds to a dimerized
state arising due to the Berry phase term.25 The critical value
�c can be estimated using known large-N result25 for the
critical point at 	=0 and the isotropic square lattice ��=1�,
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nc
crit	0.19N, which yields �c

−1�	=0�	55.4�nc /N�2−1. Since
only 0��c�1 makes sense, the latter estimate suggests that
in the absence of the perturbation 	 the system does not
order for any value of � for N�Nc�5. Extrapolating to N
=3, one obtains that at 	=0 �i.e., �=−
 /2� the critical cou-
pling is �c	0.19, while the quantum Monte Carlo
calculations9 done for bilinear-biquadratic S=1 model yield
�c�0.13.

B. Antiferromagnetic side (��0)

For 	�0 the interaction favors the minimal absolute
value of z2, so the saddle-point solution can be chosen in the
form z0=2−1/2�n0 , in0 , . . . ,0�, which in the original N=3
model corresponds to a finite AF order parameter l=−i�z0

�

z0�. For the fluctuations u and v one can set u2	0 and
v1	0 to fix the gauge, and the constraint z2=1 yields u1
+v2	0. The mean-field equations take the form

n0
2 + 2g�

k
� N − 2

�0 + k2 +
1

�0 + 4	 + k2� = 1,

�0n0 = 0. �23�

For d=1 there is again only a disordered phase with n0=0
and �0=�2, where

�2 � �2 exp�−
2


g�N − 1�� −
4	

N − 1
�24�

under the assumption 	��2, and in case �2� 	 the gap is
given by

� � �� �2

4	�
1/2�N−2�

exp�−



g�N − 2�� . �25�

For d=2 the system orders at g below the critical value gc
given by

gc
−1 �

��N − 1�

2 −


	



, �26�

and for g�gc one has a disordered phase with a finite gap
�=
�0 which grows linearly in the vicinity of the transition
�� 2


N−2 �gc
−1−g−1�.

The corresponding phase diagrams are sketched in Fig. 1.
On the AF side the effect of perturbation 	 is weaker by a
factor of �1 /N compared to the “nematic” case 	�0: for
d=2 this is translated into different amplitudes of the square-
root cusp in the dependence of the critical coupling �c on 	
for 	�0 ���−
 /2� and 	�0 ���−
 /2�. For d=1 this
effect should be seen in different slopes of the gap ��	� for
positive and negative 	; this is in line with the results from
exact diagonalization of small finite chains70 as well as with
the recent density-matrix renormalization-group calculations
for the model �1� on a ladder.5

C. Influence of the perturbation on the Berry term

Up to now we have considered only the effect of the
SU�N�-breaking perturbation 	 on the action without the

Berry term. Apart from favoring nematic or antiferromag-
netic order, the effect consists in a mere shift of the transition
point in two dimensions and a change of the gap in d=1
case. However, there is another important effect of the per-
turbation 	: as we will see, it drastically affects the Berry
term, which has important consequences for the physics of
the disordered phase.

D. d=1

The role of the Berry phase term AB at 	=0 has been
studied in detail.25,29,66 In the one-dimensional case one ob-
tains

AB
�d=1� = i�q, q =

1

2

� dxd�Fx�, �27�

where the integer number q has the meaning of the net topo-
logical charge �skyrmion number�, and

� = �
nc mod 2
�

is the so-called topological angle. Explicitly expressed
through z, the topological charge reads

q = −
i

2

� d2x������z� · ��z� . �28�

For even nc the Berry phase has no effect, while for odd nc it
leads to the twofold-degenerate ground state with a finite
“static electric field” �topological charge density�

�iFx�� = �
e0

2

N
. �29�

One can easily show that the topological charge density is
directly proportional to the dimerization order parameter, in
essentially the same way as it has been done71 for the O�3�
nonlinear sigma model. Indeed, the dimerization operator at
	=0 can be defined as

On
dim = �n�Sn · Sn+1�2 �30�

and after passing to the continuum its leading nonoscillating
part will take the form

NcN<

nematic

1

0

AF
Haldane

λ

Fe
rr

o

−3π/4 −π/2 θ

dimer
4x 2x

FIG. 1. A sketch of the phase diagram of the model �3� on an
anisotropic square lattice in the vicinity of the SU�N�-symmetric
point �=−
 /2. For N�Nc�5 the phase boundary has a square-
root-type cusp at �→−
 /2 as suggested by Eqs. �22� and �26�. For
N�Nc the dimerized phase has a finite extent at �=1. The phase
denoted as “Haldane” is for N=3 indeed the Haldane phase whose
boundary lies at �=−
 /4, and in case of N=4 it is the staggered
dimer phase �Refs. 46 and 49� with the boundary at �=0. For N
=3 only, the degeneracy of the dimerized phase is twofold for �
�−
 /2 and fourfold for ��−
 /2, see Sec. III C.
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On
dim � ��n · zn+1

� − zn · �n+1
� � + c.c.

� 2�� · �xz
� + �� · �xz� � �2J̃nc�1 + ���−1���z� · �xz

− ��z · �xz
��

= �2J̃nc�1 + ���−1�iFx�� �31�

Thus, at the SU�N�-symmetric point 	=0 the ground state
for odd nc and N�3 is spontaneously dimerized.25 The case
N=2, however, is an exception: for N=2 the model is
equivalent to the O�3� nonlinear sigma model with the topo-
logical angle �=
, which is gapless and nondimerized66–68

in a wide range of the coupling g.
Let us first illustrate the effect of the SU�N��O�N� per-

turbation 	 on the Berry phase by a simple observation57

valid for N=3. Finite 	�0 favors field configurations of the
antiferromagnetic type, namely, z= 1


2
�e1+ ie2�, with e1,2 be-

ing two orthonormal vectors and n�� ,��=e1e2 having the
meaning of the unit Néel vector characterized by two spheri-
cal angles � and �. It is a straightforward exercise to check
that

q =
1

2

� d2x sin ��������������

=
1

4

� d2x���n · ���n  ��n� = 2Q , �32�

where the topological charge Q is the winding number of the
S2�S2 mapping characterizing the space-time distribution
of the unit vector n�� ,��. This shows that negative 	 favors
z-field configurations with even charge q and suggests that
configurations with odd q become suppressed. This is physi-
cally important because if odd-q configurations are prohib-
ited, the Berry term obviously becomes ineffective, irrespec-
tively of whether nc is even or odd. The above argument
cannot be applied for N�3 because the second homotopy
group of O�N�3� sigma models is trivial so they possess no

2 topological charge. It is also not possible to extend this
argument to 	�0 because in this case “nematic” configura-
tions with z being a real �up to an arbitrary overall phase�
unit vector are favored and for such configurations the CPN−1

topological charge �28� identically vanishes.
To understand what happens in case of general N and 	,

consider the general one-skyrmion �q=1� solution of the 1
+1-dimensional CPN−1 model which has the form

z� =
c��Z − a��

���
c�2Z − a�2�1/2 , �33�

where Z=x0+ ix1 is the complex coordinate, the complex
numbers a� have the meaning of coordinates of the N skyr-
mion constituents �sometimes called “zindons” from a Per-
sian word meaning prison72� and another set of complex
numbers c� may be viewed as amplitudes associated with
each zindon. Normalizing the amplitudes c� as ��c�2=1,
putting the origin into the “center of mass” �which amounts
to demanding ��c�2a�=0�, and defining the average “size”
R of the skyrmion as the dispersion of the zindon positions,

R2 � �
�

c�2a�2, �34�

one can recast the general q=1 solution �33� in a more el-
egant form63

z =
UR + VZ

�Z2 + R2�1/2 , �35�

where U and V are two orthonormal complex N-component
vectors,

U� · U = V� · V = 1, U� · V = 0. �36�

For 	=0, i.e., in the unperturbed CPN−1 model, the action of
such skyrmion solution does not depend on its parameters.
For a finite 	, however, one gets an additional contribution to
the action from the z22 term �17�.

Let us calculate this correction to the first order in 	.
Consider first the “antiferromagnetic” case 	�0. To mini-
mize the action cost, we must reduce as much as possible the
deviations of z2 from zero. Requiring U2=0 ensures that z2

→0 at Z→�, killing the next leading term in Z fixes
U ·V=0, and, finally, if we were able to satisfy additionally
V2=0 then the condition z2=0 would be identically fulfilled.
Those three constraints can be satisfied together with Eq.
�36� only if the four real N-component vectors Re�U�,
Re�V�, Im�U�, and Im�V� are mutually orthogonal, which is
readily achieved for N�4 but is obviously impossible for
N=3. Thus, for N�4 the q=1 skyrmion �35� remains an
exact solution even for finite 	�0. In other words, when 	
�0 is switched on, the “zindons” constituting a skyrmion are
able to adjust themselves for N�4 in such a way that the
skyrmion continues to provide the minimum of action. This
is in fact amusing because formally for 	�0 the model has
only the O�N� symmetry and one would expect that skyrmi-
ons do not exist for N�3.

For N=3 and 	�0 the minimum contribution of the per-
turbation to the action of the skyrmion �35� is achieved if V
is real and the three vectors V, Re�U�, and Im�U� are mutu-
ally orthogonal. The excess action due to finite 	 is then
given by

�A	�0 = −
	

2g
� d2xz22 = −


	R2

2g
, �37�

and it grows as a square of the skyrmion size which means at
	�0 the field configurations with q=1 are prone to collapse
and only exist as metastable “excitations.” At the same time,
one can easily adjust the parameters of general q=2 skyr-
mion solutions of the 	=0 model so that z2=0 is identically
satisfied �see the Appendix�. This effect can be interpreted as
“topological pairing” of q=1 skyrmions.57 The total topo-
logical charge density Fx� can be separated into two parts
Fx�

�q=1� and Fx�
�q=2� which correspond to the contributions from

unbound q=1 skyrmions and their bound pairs, respectively.
Only Fxt

�q=1� contributes to the nontrivial part of the Berry
phase �27�, while the full Fx� enters the gauge-field kinetic-
energy term �16�. The dimerization order parameter �Odim�
� �iFx�� will be proportional to the fraction � of the q=1
skyrmions and so will be diminishing with increasing 	.
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This “topological” suppression of dimerization at 	�0 ex-
ists only for N=3 and is absent for N�4, which implies that
within our description the dimerized phase for N�4 should
extend to the entire region 	�0 �i.e., up to �=
 /4 which in
our notation is another SU�N�-symmetric point of the model,
corresponding to the transition into a critical phase35�; how-
ever, it is clear that our description will eventually break
down as the “perturbation” 	 becomes large. In fact, ac-
cording to exact results �see Ref. 73� for one-dimensional
SO�N� generalizations of the bilinear-biquadratic model �1�,
even for N�4 there is still a phase transition on the way
from the AF SU�N� point to the critical SU�N� one. The
chunk of different phase lying between the dimerized phase
and the critical SU�N� point gets squeezed with increasing N,
and the transition point for N�4 lies in the region of 	�1,
which is way beyond the range of applicability of the present
approach.

Consider now the perturbation of the opposite sign 	�0,
which favors nematiclike field configurations with z=ei��,
where � is an arbitrary phase and � is a real unit vector. For
such z the topological charge �28� is identically zero, which
indicates that skyrmions with any charge are suppressed by
the perturbation. In a different way one can see that by cal-
culating the 	-dependent correction to the action. For a q
=1 skyrmion �35� minimizing the deviation of z2 from one
leads to the requirement that U and V are real, and the re-
sulting correction diverges logarithmically with the system
size L,

�A	�0 �
2
	R2

g
ln

L

R
. �38�

In the disordered phase, one expects that the system size L
above will be replaced by the correlation length �. In contrast
to the AF-like case 	�0, this suppression persists for any
number of the field components N. A similar calculation for
q=2 yields �A	�0

q=2 �	R2, so the even-charged skyrmions are
suppressed as well though weaker than the odd-charged
ones. Thus, with increasing 	 the contribution from smooth
field configurations �skyrmions� to the Berry phase dies out,
but at the same time the contribution from discontinuous
configurations �disclinations or Z2 vortices� remains unaf-
fected and gradually becomes the leading one. Indeed, a con-
figuration with a real vector z abruptly changing sign across
some bond along a path running in the time direction con-
tributes the Berry phase equal to 
 for every such bond,10,22

which is not captured by the continuum-limit expression �27�
but is readily seen from the general formula �10�. In the
disordered phase the fluctuations of z are gapped and can be
integrated out, leaving one only with Ising-type degrees of
freedom marking bonds where a discontinuous change z→
−z occurred.10 The resulting so-called odd Z2 gauge theory74

is known to be always dimerized in one dimension,75 which,
according to Grover and Senthil,10 explains why the dimer-
ized phase extends all the way up to �=−3
 /4 �their argu-
ments can be literally transferred to the effective theory of
Ref. 58 which is suited for describing the region −3
 /4
���−0.65
 with ferro-type local correlations�.

E. d=2

In two dimensions the Berry phase is determined by in-
stanton processes �“monopoles”� changing the skyrmion to-
pological quantum number q and is given by25,60

AB =
i
nc

2 �
ri

��ri�q̃i, �39�

where the sum is over the locations ri of monopoles having
the charge q̃i �i.e., the skyrmion number gets changed by q̃i�,
and the factor ��ri� takes values of 0, 1, 2, and 3 for ri
belonging to the four dual sublattices W, X, Y, and Z, respec-
tively �see Fig. 7 of Ref. 25�. At the SU�N�-symmetric point
	=0 for nc�0 mod 4 the Berry term leads to the ground
state with nonzero instanton density, thus to finite electric
fields and to spontaneous breaking of translation
symmetry:25 the dimerized ground state is twofold degener-
ate for nc=2 mod 4 and fourfold degenerate for nc
= �1 or 3�mod 4.

When the SU�N�-breaking perturbation 	 is switched on,
the monopoles are transformed in a similar way as in d=1
case for skyrmions: at 	�0 monopoles with odd q̃ are
strongly suppressed for N=3 and remain unaffected for N
�4. Suppression of odd-charged monopoles for N=3 and
	�0 can be understood by invoking the same type of argu-
ment as that we have used in the one-dimensional case. The
monopole charge q̃=�j�dS� can be defined as the quantized
flux of the “skyrmion current”

j� =
1

2

 ���

�A�

�x�
= −

i

2

 ������z� · ��z� �40�

through a closed surface surrounding the monopole. For
antiferromagnetic-type configurations favored at 	�0 one
again can write z= 1


2
�e1+ ie2�, where e1,2 are two orthonor-

mal vectors, and define the corresponding O�3� unit unit
vector field l=e1e2. Then it is easy to obtain

j� =
1

2

 ������e2 · ��e1�

=
1

2

 ����e1 · �e2  ��e2���e2 · �e1  ��e1��

=
1

4

 ���l · ���l  ��l� � 2J�, �41�

where J� is the corresponding skyrmion current of the O�3�
nonlinear sigma model whose flux through a closed surface
should be an integer number. Again, this argument only
works for N=3. For N�4 the q̃=1 monopole solution76

z = U cos��/2�ei� + V sin��/2� , �42�

where � and � are the angular spherical coordinates in the
�2+1�-dimensional space, and the monopole is assumed to
be placed at the origin, can be easily adjusted to yield z2

=0 identically for N�4, and for N=3 the excess action due
to the perturbation 	 of such a monopole diverges as the
space-time volume �note that this contribution arises due to
deviation of z2 from zero and thus is not destroyed by the
vanishing spin stiffness in the disordered phase as the con-
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tribution from the main A0 part of the action does76�. Even-
charged monopoles can be shown to survive for a finite 	
�0 as exact solutions �see the Appendix�. So, we come to
the conclusion that at 	�0 the odd-charged monopoles get
confined into pairs for N=3 but are insensitive to the pertur-
bation for N�4. The consequence for N=3 is that the con-
tribution of odd-charged monopoles is switched off for any
finite 	�0, which effectively amounts to doubling nc in Eq.
�39�; for the bilinear-biquadratic S=1 model �1� that means
that the dimerized state is doubly degenerate at 	�0 and
becomes fourfold degenerate only at 	=0.

On the nematic side �	�0� the effective theory has been
constructed by Grover and Senthil;10 they have shown that
the problem can be mapped to an XY model with a fourfold
anisotropy term. The dimerized ground state is, respectively,
predicted to be fourfold degenerate in that case. One is thus
led to conclude that �=−
 /2 for N=3 should be the first-
order transition line.

IV. EFFECT OF THE SU(N)¾SU(N−1) PERTURBATION

Consider now a different way to perturb the SU�N� sym-
metry, namely, let us introduce a finite mass for one of the
components of the z field,

A � A +
m0

2

2g
� dd+1xzN2, �43�

which for the S=1 model �1� is equivalent to including the
easy-axis single-ion anisotropy term �5� with D=2gm0

2. For
cold atoms in optical lattices, such terms appear naturally in
the presence of external magnetic field due to the quadratic
Zeeman coupling.23,56 This perturbation breaks the SU�N�
symmetry of the model down to SU�N−1� and produces a
CPN−2 model with the topological angle �=
 as the effec-
tive theory. Actually, the operators N


zz=�n�ntn,N
† tn,N and

N0
zz=�ntn,N

† tn,N commute with the Hamiltonian �3� if cos �
=0 and sin �=0, respectively. So, at the “ferro-SU�3�” point
�=−5
 /4 the single-ion anisotropy D acts simply as an “ex-
ternal field” coupling to a conserved quantity, but at the
“AF-SU�3�” point �=−
 /2 the situation is different.

In one dimension �d=1�, if the mass m0 is large compared
to the gap ��� exp�−
 /g�N−1��, one can integrate out just
the single most massive Nth component and obtain in that
way a correspondence between the bare coupling constant
gN−1 of the effective CPN−2 model and the bare coupling
constant g�gN of the original CPN−1 model,

gN−1 =
g

1 − g
2
 ln�1 + �2

m0
2�

. �44�

Now, the case N=3 is again exceptional because the CP1

model with the topological angle �=
 in d=1 is gapless in
an extended range of coupling. At infinite coupling g2=� the
parity is broken77 and several approaches66,67 indicate that
there is a parity-breaking dimerization transition at a strong
but finite value of g2, although it seems the answer may
depend on the specific lattice realization.68 Thus, at least for
some range of g�g3 the coupling g2 will flow to zero and
one expects a phase transition for N=3 on the way from

m0=0 to �. For N�4 the resulting CPN−2 model with �
=
 remains dimerized, so no phase transition takes place.

In the two-dimensional case, a usual poor-man’s renor-
malization group calculation yields the effective coupling g̃
as a function of the anisotropy m0

2,

g̃ =
g

1 − g
2
2��N − 1�� − m0 arctan �

m0
� . �45�

Depending on the value of the bare coupling g
=nc

−1
1+1 /�, there are three possible scenarios: �a� if g
�gN

�c�=
2 / ���N−1�� then the system has long-range nem-
atic or AF order all the way from m0=0 to �; �b� if gN

�c�

�g�gN−1
�c� then the system is disordered �and dimerized� at

m0=0, but with increasing m0 there is an ordering transition
at m0��2
 /g0��1−g /gN

�c��; finally, if g�gN−1
�c� , the system

stays dimerized at all values of m0. The combined effect of
the SU�N��SU�N−1�-breaking perturbation �43� and the
SU�N��O�N� one �Eq. �17�� is also transparent: taken to-
gether, those terms lower the symmetry to O�N−1�, and for
N�4 the corresponding behavior as a function of 	 at finite
m0 can be inferred from the behavior of the model with N
→N−1. In one dimension, for N=3 and at large m0, 	�0
favors a phase with dominant power-law XY-type nematic
correlations �the XY2 phase in the classification of Schulz78�,
while 	�0 favors the Ising-type long-range antiferromag-
netic order. The transition from the XY nematic to the dimer-
ized phase is of the Berezinskii-Kosterlitz-Thouless type and
the transition from the AF Ising to the dimerized phase be-
longs to the Ising universality class. The corresponding
phase diagrams are sketched in Fig. 2.

For the spin-1 model �1� that corresponds to N=3, it is
instructive to construct the effective Hamiltonian in the limit
of strong single-ion anisotropy D�1. Indeed, in that limit
the Hilbert space at each site n is effectively reduced to the
two spin-1 states + � and −�, which can be identified with
↑ � and ↓ � states of pseudospin-1

2 . In the second order of
perturbation theory in 1 /D, the effective Hamiltonian is
given by the XXZ model in terms of pseudospin-1

2 operators
�n

Heff = �
n

�h̃n,n+x + �h̃n,n+y� ,

h̃n,n� = − J̃xy��n
x�n�

x + �n
y�n�

y � + J̃z�n
z�n�

z ,

J̃xy � − 2 sin � +
�cos � − sin ��2

D
,

J̃z = J̃xy + 4 cos � . �46�

One can see that for �=−
 /2 the effective Hamiltonian is
SU�2� symmetric, in agreement with the continuum field de-
scription. Deviations from �=−
 /2 break this SU�2� sym-
metry, favoring AF or nematic order.

V. SUMMARY

We have studied the consequences of explicit symmetry
breaking in the model of low-dimensional SU�N� antiferro-
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magnet on a bipartite lattice motivated by the physics of cold
spinor bosonic atoms in optical lattices. Two possible routes
have been considered: lowering the SU�N� symmetry down
to O�N� and to SU�N−1�. Physically, in cold atom systems
those perturbations naturally arise due to the presence of the
external magnetic field which controls the detuning from the
Feshbach resonance and simultaneously causes the quadratic
Zeeman effect. Both ways of the symmetry breaking result in
rich sequences of transitions between dimerized, antiferro-
magnetic, and spin-nematic phases. The qualitative form of
the phase diagram depending on the model parameters is
established. It is shown that the physically interesting case
N=3 is special: perturbing the SU�3� symmetry leads to non-
trivial changes in the Berry phases, which are reflected in the
degeneracy of the dimerized phase.
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APPENDIX: EVEN-CHARGED SKYRMIONS
AND MONOPOLES IN THE PERTURBED CP2 MODEL

Consider a general q=2 skyrmion solution of the unper-
turbed �	=0� �1+1�-dimensional CP2 model, which has the
form

z� = f�/f, f� = a�Z2 + b�Z + c�. �A1�

Now we would like to adjust the parameters of the above
solution to satisfy z2=0, making it suitable for 	�0. Denot-
ing the real and imaginary parts of the three-component com-
plex vectors a, b, and c as a1, a2, etc., we see that �a1 , a2�
must be �up to a scale factor� a pair of mutually orthogonal
unit vectors and the same is true for �c1 , c2�. We choose the
coordinate system so that c1 � x̂ and c2 � ŷ and set bz=2R�0
to fix the overall phase and norm. The following solution
does the job:

b = ���,�,2R�, c = R2�1,i,0�, a = a1 + ia2,

a1 = �− 1 − �2 cos 2!,�2 sin 2!,2� sin !� ,

a2 = �− �2 sin 2!,1 − �2 cos 2!,− 2� cos !� , �A2�

where � is an arbitrary complex number and � and ! are real.
It is easy to convince oneself that this solution is nothing but
the disguised Belavin-Polyakov skyrmion79 of the O�3� non-
linear sigma model with the topological charge Q=1. The
correspondence between the CP2 field z and the sigma-
model unit vector l is given by l=−i�z�z�, and the O�3�
topological charge is determined by Eq. �32�. One can easily
see that the simplest Belavin-Polyakov solution ��1
+ i�2� / �1−�3�=Z /R translates into

z =
1


2�Z2 + R2�
�Z2 + R2,i�R2 − Z2�,2iRZ�

which after a rotation Z�Ze−i
/2 becomes a special case of
Eq. �A2� with �=0, !=
 /2, and �=0. This solution de-
scribes a q=2 skyrmion whose six constituents �“zindons”�
sit at Z= �R, Z= � iR, Z=0, and Z=�.

In a similar way, one can show that in �2+1� dimensions
a monopole of the CP2 model with the even integer charge
q̃=2m defined as a solution to the equation80

 ���
�A�

�x�
=

q̃x�
2r3 , �A3�

where r2=��x�
2 and the monopole is assumed to be at the

origin, corresponds exactly to the hedgehog solution of the

O�3� model with a charge Q̃=m. Indeed, it is straightforward
to check that the solution of the form

m0
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FIG. 2. A sketch of the phase diagram of the model �3� in the
vicinity of the SU�N�-symmetric point �=−
 /2, in the presence of
two symmetry-breaking perturbations �17� and �43�: �a� the one-
dimensional case with N=3; for N�4 only the dimerized phase
survives around the SU�N�-symmetrical point; �b�–�d� the two-
dimensional case for different values of the bare coupling g
=nc

−1
1+�−1; here gN
�c�=
2 / ���N−1��; for N=3 only, the degen-

eracy of the dimerized phase changes from fourfold at ��−
 /2 to
twofold at ��−
 /2.
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z =
1

2�cos � cos�m�� − i sin�m��

cos � sin�m�� + i cos�m��
− sin �

� , �A4�

where � and � are the spherical angular coordinates in the
�2+1�-dimensional space, satisfies Eq. �A3� with q̃=2m, sat-

isfies z2=0, and its corresponding O�3� unit unit vector field
l=−i�z�z� describes a Q̃=m hedgehog,

l = �sin � cos �,sin � sin �,cos �� . �A5�

This confirms that the even-charged monopoles �A4� remain
exact solutions even in the perturbed case �but only for 	
�0�. Odd-charged monopoles are suppressed as explained in
Sec. III C.
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